Reglas de derivación

<table>
<thead>
<tr>
<th>Suma</th>
<th>y = u + v</th>
<th>y' = u' + v'</th>
<th>Producto</th>
<th>y = u v</th>
<th>y' = u' v + v' u</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resta</td>
<td>y = u - v</td>
<td>y' = u' - v'</td>
<td>Cociente</td>
<td>y = \frac{u}{v}</td>
<td>y' = \frac{u'v - v'u}{v^2}</td>
</tr>
</tbody>
</table>

y = k	y' = 0		y = u	y' = u'
y = x	y' = 1		y = k x	y' = k u
y = \frac{1}{x}	y' = -\frac{1}{x^2}		y = \frac{1}{u}	y' = -\frac{u'}{u^2}
y = x^2	y' = 2x		y = u^2	y' = 2u u'
y = x^n	y' = n x^{n-1}		y = u^n	y' = n u^{n-1} u'
y = e^x	y' = e^x		y = e^u	y' = u' e^u
y = a^x	y' = a^x \ln a		y = a^u	y' = u' a^u \ln a
y = \ln x	y' = \frac{1}{x}		y = \ln u	y' = \frac{u'}{u}
y = \log_a x	y' = \frac{1}{x \ln a}		y = \log_a u	y' = \frac{u'}{u \ln a}
y = \sqrt{x}	y' = \frac{1}{2 \sqrt{x}}		y = \sqrt{u}	y' = \frac{u'}{2 \sqrt{u}}
y = \sin x	y' = \cos x		y = \sin u	y' = u' \cos u
y = \cos x	y' = -\sin x		y = \cos u	y' = -u' \sin u
y = \tan x	\begin{cases} y' = 1 + \tan^2 x \\ = \frac{1}{\cos^2 x} = \sec^2 x \end{cases}		y = \tan u	\begin{cases} y' = (1 + \tan^2 u) u' \\ = \frac{u'}{\cos^2 u} = u' \sec^2 u \end{cases}
y = \cot x	y' = -\frac{1}{\sec^2 x} = -\cosec^2 x		y = \cot u	y' = -\frac{u'}{\sec^2 u} = -u' \cosec^2 u
y = \arcsen x	y' = \frac{1}{\sqrt{1-x^2}}		y = \arcsen u	y' = \frac{u'}{\sqrt{1-u^2}}
y = \arccos x	y' = -\frac{1}{\sqrt{1-x^2}}		y = \arccos u	y' = -\frac{u'}{\sqrt{1-u^2}}
y = \arctan x	y' = \frac{1}{1+x^2}		y = \arctan u	y' = \frac{u'}{1+u^2}

Derivación logarítmica

1) y = u^v
2) \ln y = \ln(u^v)
3) \ln y = v \ln u
4) \frac{y'}{y} = v' \ln u + v \frac{u'}{u}
5) y'' = y \left(v' \ln u + v \frac{u'}{u} \right)
6) y'' = u' \left(v' \ln u + v \frac{u'}{u} \right)

Siendo: y, u, v funciones de x; a, k, n constantes.